浏览全部资源
扫码关注微信
首都医科大学附属北京友谊医院 北京 100050
夏雨奇 博士 住院医师;研究方向:耳科、听力学
刘玉和,E-mail:liuyuhefeng@163.com
纸质出版日期:2024-09-15,
收稿日期:2024-05-18,
移动端阅览
夏雨奇,刘玉和.人工耳蜗植入术后认知功能的神经生理学评估方法[J].中国听力语言康复科学杂志,2024,22(05):555-560.
XIA Yu-qi,LIU Yu-he.Electrophysiological Measures of Cognitive Assessment after Cochlear Implant[J].Chinese Scientific Journal of Hearing and Speech Rehabilitation,2024,22(05):555-560.
夏雨奇,刘玉和.人工耳蜗植入术后认知功能的神经生理学评估方法[J].中国听力语言康复科学杂志,2024,22(05):555-560. DOI: 10.3969/j.issn.1672-4933.2024.05.026.
XIA Yu-qi,LIU Yu-he.Electrophysiological Measures of Cognitive Assessment after Cochlear Implant[J].Chinese Scientific Journal of Hearing and Speech Rehabilitation,2024,22(05):555-560. DOI: 10.3969/j.issn.1672-4933.2024.05.026.
脑电图是一种非侵入性、高时间分辨率的客观评估技术,可以反映高级听觉中枢对声音的反应和处理过程。电生理学方法可以为人工耳蜗植入术后的功能认知评估提供客观依据,具有重要的临床意义和研究价值。本文总结目前人工耳蜗术后常用的认知评估神经生理学指标及其临床意义,从听觉短、中、长潜伏期的诱发电位分别进行综述,归纳脑电图在人工耳蜗植入术后认知功能评估中的重要作用。
Electroencephalogram (EEG) is non-invasive
high-temporal-resolution and objective
which can reflect the process of sound in the auditory system. Electrophysiological measures provide objective cognitive assessment after cochlear implantation (CI). They are of great significance for clinical practice and research. This article summarizes EEG and its clinical significance for the assessment of cognitive function for CI users
including the short latency response
the auditory middle latency response and the long latency auditory evoked potential. Thus
we emphasize the important role of electrophysiological measures in the cognitive assessment after CI.
人工耳蜗认知功能神经生理学评估
Cochlear implantCognitive functionElectrophysiological measures
Lin FR, Yaffe K, Xia J, et al. Hearing loss and cognitive decline in older adults[J]. JAMA Intern Med, 2013, 173(4): 293-299.
Kral A, Dorman MF, Wilson BS. Neuronal development of hearing and language: Cochlear implants and critical periods[J]. Annual Review of Neuroscience, 2019(42): 47-65.
Wang B, Cao K, Wei C, et al. Evaluating auditory pathway by electrical auditory middle latency response and postoperative hearing rehabilitation[J]. J Invest Surg, 2019, 32(6): 542-551.
Zhu HY, Guo XT, Sun JQ, et al. Characteristics of electrically evoked auditory brainstem response in children with large vestibular aqueduct syndrome after cochlear implantation[J]. Acta Otolaryngol, 2022, 142(1): 52-56.
Deniz B, Kara E, Polat Z, et al. Changes in electrically evoked auditory brainstem responses in children with sequential bilateral cochlear implants[J]. Int J Pediatr Otorhinolaryngol, 2021, 141: 110555.
Worden FG, Marsh JT. Frequency-following (microphonic-like) neural responses evoked by sound[J]. Electroencephalogr Clin Neurophysiol, 1968, 25(1): 42-52.
Chandrasekaran B, Kraus N. The scalp-recorded brainstem response to speech: Neural origins and plasticity[J]. Psychophysiology, 2010, 47(2): 236-246.
Wang Q, Lu H, Wu Z, et al. Neural representation of interaural correlation in human auditory brainstem: Comparisons between temporal-fine structure and envelope[J]. Hear Res, 2018, 365: 165-173.
Gransier R, Guerit F, Carlyon RP, et al. Frequency following responses and rate change complexes in cochlear implant users[J]. Hear Res, 2021, 404: 108200.
Venancio LGA, Leal MC, Hora L, et al. Frequency-following response (ffr) in cochlear implant users: A systematic review of acquisition parameters, analysis, and outcomes[J]. Codas, 2022, 34(4): e20210116.
Kraus N, McGee T. The middle latency response generating system[J]. Electroencephalogr Clin Neurophysiol Suppl, 1995, 44: 93-101.
Gordon KA, Papsin BC, Harrison RV. Effects of cochlear implant use on the electrically evoked middle latency response in children[J]. Hearing Research, 2005, 204(1): 78-89.
Williams HL, Tepas DI, Morlock HC, Jr. Evoked responses to clicks and electroencephalographic stages of sleep in man[J]. Science, 1962, 138(3541): 685-686.
Davis H. Slow cortical responses evoked by acoustic stimuli[J]. Acta Otolaryngologica, 1965, 59(2-4): 179-185.
Davis H, Mast T, Yoshie N, et al. The slow response of the human cortex to auditory stimuli: Recovery process[J]. Electroencephalography and Clinical Neurophysiology, 1966, 21(2): 105-113.
熊晶晶,杨影.皮层听觉诱发电位的P1-N1-P2成分在听力障碍人群中的研究进展[J].听力学及言语疾病杂志, 2019, 27(5): 556-560.
Gilley PM, Sharma A, Dorman M, et al. Developmental changes in refractoriness of the cortical auditory evoked potential[J]. Clin Neurophysiol, 2005, 116(3): 648-657.
Wunderlich JL, Cone-Wesson BK. Maturation of caep in infants and children: A review[J]. Hear Res, 2006, 212(1-2): 212-223.
Kelly AS, Purdy SC, Thorne PR. Electrophysiological and speech perception measures of auditory processing in experienced adult cochlear implant users[J]. Clin Neurophysiol, 2005, 116(6): 1235-1246.
Davis H. Enhancement of evoked cortical potentials in humans related to a task requiring a decision[J]. Science, 1964, 145(3628): 182-183.
黄运甜. 英国听力协会推荐皮层听觉诱发电位测试流程[J]. 听力学及言语疾病杂志, 2017, 25(1): 100-105.
Sharma A, Nash AA, Dorman M. Cortical development, plasticity and re-organization in children with cochlear implants[J]. J Commun Disord, 2009, 42(4): 272-279.
Ni G, Zheng Q, Liu Y, et al. Objective electroencephalography-based assessment for auditory rehabilitation of pediatric cochlear implant users[J]. Hear Res, 2021, 404: 108211.
Polonenko MJ, Vicente LC, Papsin BC, et al. Longitudinal effects of simultaneous and sequential bilateral cochlear implantation on cortical auditory-evoked potentials recorded at cz in a large cohort of children[J]. Ear Hear, 2023, 44(1): 92-108.
Chen YX, Xu XR, Huang S, et al. Auditory sensory gating in children with cochlear implants: A p50-n100-p200 study[J]. Frontiers in neuroscience, 2021, 15: 768427.
Tomlin D, Rance G. Maturation of the central auditory nervous system in children with auditory processing disorder[J]. Semin Hear, 2016, 37(1): 74-83.
Koravand A, Jutras B, Lassonde M. Abnormalities in cortical auditory responses in children with central auditory processing disorder[J]. Neuroscience, 2017, 346: 135-148.
Naatanen R, Gaillard AW, Mantysalo S. Early selective-attention effect on evoked potential reinterpreted[J]. Acta Psychol (Amst), 1978, 42(4): 313-329.
MacLean SE, Blundon EG, Ward LM. Brain regional networks active during the mismatch negativity vary with paradigm[J]. Neuropsychologia, 2015, 75: 242-251.
Garrido MI, Kilner JM, Stephan KE, et al. The mismatch negativity: A review of underlying mechanisms[J]. Clin Neurophysiol, 2009, 120(3): 453-463.
Näätänen R, Petersen B, Torppa R, et al. The mmn as a viable and objective marker of auditory development in ci users[J]. Hearing Research, 2017, 353: 57-75.
Naatanen R, Tervaniemi M, Sussman E, et al. "Primitive intelligence" in the auditory cortex[J]. Trends Neurosci, 2001, 24(5): 283-288.
Lopez-Valdes A, Mc Laughlin M, Viani L, et al. Auditory mismatch negativity in cochlear implant users: A window to spectral discrimination[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2013, 2013: 3555-3558.
Fu M, Wang L, Zhang M, et al. A mismatch negativity study in mandarin-speaking children with sensorineural hearing loss[J]. International Journal of Pediatric Otorhinolaryngology, 2016, 91: 128-140.
Ibraheem OA, Kolkaila EA, Nada EH, et al. Auditory cortical processing in cochlear-implanted children with different language outcomes[J]. European Archives of Oto-Rhino-Laryngology, 2020, 277(7): 1875-1883.
Deroche MLD, Wolfe J, Neumann S, et al. Auditory evoked response to an oddball paradigm in children wearing cochlear implants[J]. Clinical Neurophysiology, 2023, 149: 133-145.
Sutton S, Braren M, Zubin J, et al. Evoked-potential correlates of stimulus uncertainty[J]. Science, 1965, 150: 1187 - 1188.
Polich J. Updating p300: An integrative theory of p3a and p3b[J]. Clinical Neurophysiology, 2007, 118(10): 2128-2148.
Reis ACMB, Frizzo ACF, Isaac MdL, et al. P300 in individuals with sensorineural hearing loss[J]. Brazilian Journal of Otorhinolaryngology, 2015, 81(2): 126-132.
Fjell A M, Walhovd KB. Effects of auditory stimulus intensity and hearing threshold on the relationship among p300, age, and cognitive function[J]. Clinical Neurophysiology, 2003, 114(5): 799-807.
Abrahamse R, Beynon A, Piai V. Long-term auditory processing outcomes in early implanted young adults with cochlear implants: The mismatch negativity vs. P300 response[J]. Clinical Neurophysiology, 2021, 132(1): 258-268.
Amaral MSAd, Zamberlan-Amorin NE, Mendes KDS, et al. The p300 auditory evoked potential in cochlear implant users: A scoping review[J]. International Archives of Otorhinolaryngology, 2021, 27: e518 - e527.
Friesen LM, Tremblay KL. Acoustic change complexes recorded in adult cochlear implant listeners[J]. Ear Hear, 2006, 27(6): 678-685.
Sanju HK, Jain T, Kumar P. Acoustic change complex as a neurophysiological tool to assess auditory discrimination skill: A review[J]. Int Arch Otorhinolaryngol, 2023, 27(02): e362-e369.
Jeon EK, Mussoi BS, Brown CJ, et al. Acoustic change complex recorded in hybrid cochlear implant users[J]. Audiology and Neurotology, 2023, 28(3): 151-157.
van Heteren JAA, Vonck BMD, Stokroos RJ, et al. The acoustic change complex compared to hearing performance in unilaterally and bilaterally deaf cochlear implant users[J]. Ear and Hearing, 2022, 43(6): 1783-1799.
Kutas M, Hillyard SA. Reading senseless sentences: Brain potentials reflect semantic incongruity[J]. Science, 1980, 207(4427): 203-205.
Kallioinen P, Olofsson JK, von Mentzer CN. Semantic processing in children with cochlear implants: A review of current n400 studies and recommendations for future research[J]. Biological Psychology, 2023, 182: 108655.
Bell N, Angwin AJ, Arnott WL, et al. Semantic processing in children with cochlear implants: Evidence from event-related potentials[J]. Journal of clinical and experimental neuropsychology, 2019, 41(6): 576-590.
Burkhardt P, Müller V, Meister H, et al. Age effects on cognitive functions and speech-in-noise processing: An event-related potential study with cochlear-implant users and normal-hearing listeners[J]. Frontiers in neuroscience, 2022, 16: 1005859.
Abreu AL, Fernández-Aguilar L, Ferreira-Santos F, et al. Increased n250 elicited by facial familiarity: An erp study including the face inversion effect and facial emotion processing[J]. Neuropsychologia, 2023, 188: 108623.
Rivera B, Soylu F. Incongruity in fraction verification elicits n270 and p300 erp effects[J]. Neuropsychologia, 2021, 161: 108015.
Wang YH, Bao W, Luo JL. When old information is intermixed with new elements: An event-related potential study[J]. Biological Psychology, 2021, 163: 108132.
伍海燕, 刘勋. 事件相关电位对儿童认知功能的评估诊断[J]. 中国实用儿科杂志, 2017, 32(4): 282-285.
Kessler M, Schierholz I, Mamach M, et al. Combined brain-perfusion spect and eeg measurements suggest distinct strategies for speech comprehension in ci users with higher and lower performance[J]. Frontiers in neuroscience, 2020, 14: 787.
Shen W, Fiori-Duharcourt N, Isel F. Functional significance of the semantic p600: Evidence from the event-related brain potential source localization[J]. Neuroreport, 2016, 27(7): 548-558.
Koirala N, Deroche MLD, Wolfe J, et al. Dynamic networks differentiate the language ability of children with cochlear implants[J]. Front Neurosci, 2023, 17: 1141886.
0
浏览量
170
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构