浏览全部资源
扫码关注微信
新疆医科大学第一附属医院耳鼻喉科 乌鲁木齐 830054
李星 本科 主任护师;研究方向:听力障碍
赵琦,E-mail:303580571@qq.com
纸质出版日期:2024-09-15,
收稿日期:2023-10-19,
移动端阅览
李星,何金凯,赵琦.不同噪声条件下健听人群水平声源定位能力差异研究[J].中国听力语言康复科学杂志,2024,22(05):479-483.
LI Xing,HE Jin-kai,ZHAO Qi.The Differences in Horizontal Sound Source Recognition and Localization Ability of Normal Hearing Population under Different Noise Conditions[J].Chinese Scientific Journal of Hearing and Speech Rehabilitation,2024,22(05):479-483.
李星,何金凯,赵琦.不同噪声条件下健听人群水平声源定位能力差异研究[J].中国听力语言康复科学杂志,2024,22(05):479-483. DOI: 10.3969/j.issn.1672-4933.2024.05.007.
LI Xing,HE Jin-kai,ZHAO Qi.The Differences in Horizontal Sound Source Recognition and Localization Ability of Normal Hearing Population under Different Noise Conditions[J].Chinese Scientific Journal of Hearing and Speech Rehabilitation,2024,22(05):479-483. DOI: 10.3969/j.issn.1672-4933.2024.05.007.
目的
2
探讨不同噪声条件下健听人群水平声源定位能力的差异。
方法
2
选取2022年8月~2023年8月在我院检查的听力正常者78例,测试在安静、白噪声35 dB SPL、40 dB SPL和言语噪声40 dB SPL条件下,受试者应答扬声器与发声扬声器的均方根误差(root mean square error,RMSE)和平均应答时间。
结果
2
不同噪声条件下受试者平均应答时间比较无显著差异(
P
>0.05);安静条件下受试者RMSE为10.21°±1.55°,明显低于白噪声35 dB SPL、40 dB SPL和言语噪声40 dB SPL条件下(
P
<0.05);白噪声40 dB SPL、言语噪声40 dB SPL条件下受试者RMSE分别为15.02°±2.22°和15.16°±2.06°,明显高于白噪声35 dB SPL(
P
<0.05);安静、白噪声35 dB SPL、白噪声40 dB SPL和言语噪声40 dB SPL条件下受试者对低频、中频和高频刺激声的平均应答时间无显著差异(
P
>0.05);白噪声35 dB SPL、40 dB SPL和言语噪声40 dB SPL条件下受试者对高频刺激声的RMSE均高于低频、中频刺激声(
P
<0.05),对中频刺激声的RMSE均高于低频刺激声(
P
<0.05);安静、白噪声35 dB SPL、40 dB SPL和言语噪声40 dB SPL条件下受试者对前方声源的RMSE明显低于其他方位(
P
<0.05);安静、白噪声35 dB SPL、40 dB SPL和言语噪声40 dB SPL条件下受试者对前方和其他方位声源的平均应答时间无显著差异(
P
>0.05);安静、白噪声35 dB SPL、40 dB SPL和言语噪声40 dB SPL条件下,不同性别、年龄受试者RMSE及平均应答时间无显著差异(
P
>0.05)。
结论
2
噪声对健听人群声源识别定位能力有明显影响,在不同噪声条件下,受试者更容易定位来自前方的声源。
Objective
2
To explore the differences in horizontal sound source recognition and localization abilities among people with normal hearing under different noise conditions.
Methods
2
78 normal hearing individuals examined at our hospital from August 2022 to August 2023 were selected to test the root mean square error (RMSE) and the average response time of the speaker and speaker under quiet conditions
with white noise of 35 dB SPL
white noise of 40 dB SPL
and speech noise of 40 dB SPL.
Results
2
There was no statistically significant difference in the average response time of subjects under different noise con
ditions (
P
>
0.05). The RMSE of the subjects under quiet conditions was (10.21 ± 1.55) °
significantly lower than that under white noise conditions of 35 dB SPL
white noise conditions of 40 dB SPL
and speech noise conditions of 40 dB SPL (
P
<
0.05). The RMSE of subjects under white noise 40 dB SPL and speech noise 40 dB SPL conditions were (15.02 ± 2.22) ° and (15.16 ± 2.06) °
respectively
significantly higher than those under white noise 35 dB SPL and (
P
<
0.05). There was no statistically significant difference in the average response time of subjects to low-frequency
intermediate
and high-frequency stimuli under quiet
white noise 35 dB SPL
white noise 40 dB SPL
and speech noise 40 dB SPL conditions (
P
>
0.05). Under the conditions of 35 dB SPL and 40 dB SPL white noises
the RMSE of subjects to high-frequency stimuli was higher than that of low-frequency and intermediate stimuli (
P
<
0.05). Under the condition of 40 dB SPL speech noise
the RMSE of subjects to high-frequency stimuli was higher than that to low-frequency stimuli (
P
<
0.05). Under the conditions of quietness
white noises of 35 dB SPL
and 40 dB SPL
and speech noise of 40 dB SPL
the RMSE of the subjects towards the front sound source was significantly lower than that of other directions (
P
<
0.05). There was no statistically significant difference in the average response time of subjects to the front and other directional sound sources under quiet
white noise 35 dB SPL
white noise 40 dB SPL
and speech noise 40 dB SPL conditions (
P
>
0.05). There was no statistically significant difference in RMSE and average response time among subjects of different genders and ages under quiet
white noise 35 dB SPL
white noise 40 dB SPL
and speech noise 40 dB SPL conditions (
P
>
0.05).
Conclusion
2
Noise has a significant impact on the ability of normal hearing individuals to identify and locate sound sources. Under different noise conditions
subjects are more likely to locate sound sources from the front.
听力正常声源定位白噪声言语噪声
Normal hearingSound source localizationWhite noiseSpeech noise
Denk F, Ewert SD, Kollmeier B. On the limitations of sound localization with hearing devices[J]. The Journal of the Acoustical Society of America, 2019,146(3):1732-1744.
Zheng Y, Swanson J, Koehnke J, et al. Sound Localization of Listeners With Normal Hearing, Impaired Hearing, Hearing Aids, Bone-Anchored Hearing Instruments, and Cochlear Implants: A Review[J]. American Journal of Audiology, 2022,31(3):819-834.
Hendrikse MME, Eichler T, Hohmann V, et al. Self-motion with Hearing Impairment and (Directional) Hearing Aids[J]. Trends in hearing, 2022,26:1861392051.
Macena Duarte VO, Neves-Lobo IF, Samelli AG. Effects of noise on the vestibular system of normal-hearing workers[J]. Work, 2022,73(4):1217-1225.
Eklöf M, Asp F, Berninger E. Sound localization latency in normal hearing and simulated unilateral hearing loss[J]. Hearing Research, 2020,395:108011.
Anderson SR, Jocewicz R, Kan A, et al. Sound source localization patterns and bilateral cochlear implants: Age at onset of deafness effects[J]. PLoS One, 2022,17(2):e263516.
Risoud M, Hanson JN, Gauvrit F, et al. Azimuthal sound source localization of various sound stimuli under different conditions[J]. European Annals of Otorhinolaryngology, Head and Neck Diseases, 2020,137(1):21-29.
龙越, 王伟, 刘娇, 等. 听力正常人群噪声竞争条件下声源定位能力研究[J]. 中华耳科学杂志, 2023,21(1):35-40.
Fostick L, Fink N. Situational Awareness: The Effect of Stimulus Type and Hearing Protection on Sound Localization[J]. Sensors, 2021,21(21):7044.
Muthu ANP, Fathima H, Kanagokar V, et al. A system for spatial hearing research[J]. MethodsX, 2022,9:101727.
Van der Heijden K, Rauschecker JP, De Gelder B, et al. Cortical mechanisms of spatial hearing[J]. Nature reviews. Neuroscience, 2019,20(10):609-623.
Middlebrooks JC, Waters MF. Spatial Mechanisms for Segregation of Competing Sounds, and a Breakdown in Spatial Hearing[J]. Frontiers in Neuroscience, 2020,14:571095.
龙越, 王伟, 刘娇, 等. 听力正常人群噪声竞争条件下声源定位能力研究[J]. 中华耳科学杂志, 2023,21(1):35-40.
周文培, 彭美俊, 曾湾, 等. 健听儿童在不同测试环境下声源定位能力初步研究[J]. 中国听力语言康复科学杂志, 2020,18(3):203-207.
Zheng Y, Swanson J, Koehnke J, et al. Sound Localization of Listeners With Normal Hearing, Impaired Hearing, Hearing Aids, Bone-Anchored Hearing Instruments, and Cochlear Implants: A Review[J]. American journal of audiology, 2022,31(3):819-834.
Risoud M, Hanson JN, Gauvrit F, et al. Azimuthal sound source localization of various sound stimuli under different conditions[J]. European Annals of Otorhinolaryngology, Head and Neck Diseases, 2020,137(1):21-29.
Weissgerber T, Müller C, Stöver T, et al. Age Differences in Speech Perception in Noise and Sound Localization in Individuals With Subjective Normal Hearing[J]. Frontiers in Psychology, 2022,13:845285.
Jenstad LM, Gillen L, Singh G, et al. A Laboratory Evaluation of Contextual Factors Affecting Ratings of Speech in Noise: Implications for Ecological Momentary Assessment[J]. Ear Hear, 2019,40(4):823-832.
Yost WA, Pastore MT, Dorman MF. Sound source localization is a multisystem process[J]. Acoustical Science and Technology, 2020,41(1):113-120.
Boyce WP, Lindsay A, Zgonnikov A, et al. Optimality and Limitations of Audio-Visual Integration for Cognitive Systems[J]. Frontiers in Robotics and AI, 2020,7:94-94.
0
浏览量
38
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构