浏览全部资源
扫码关注微信
1.北京社会管理职业学院(民政部培训中心) 北京 102600
2.首都医科大学附属北京同仁医院神经耳科 北京 100730
3.首都医科大学附属北京同仁医院/北京市耳鼻咽喉科研究所/首都医科大学耳鼻咽喉头颈科学教育部重点实验室 北京 100730
4.首都医科大学附属北京同仁医院耳鼻咽喉头颈外科 北京 100730
张李芳 博士;研究方向:耳科学与听力学
李永新,E-mail:entlyx@sina.com
纸质出版日期:2024-09-15,
收稿日期:2024-08-19,
移动端阅览
张李芳,孟超,郭倩倩等.Mondini畸形婴幼儿人工耳蜗术后听觉能力长期随访研究[J].中国听力语言康复科学杂志,2024,22(05):460-464.
ZHANG Li-fang,MENG Chao,GUO Qian-qian,et al.Long-term Follow-up Study of Auditory Performance after Cochlear Implantation in Infants and Toddlers with Mondini Deformity[J].Chinese Scientific Journal of Hearing and Speech Rehabilitation,2024,22(05):460-464.
张李芳,孟超,郭倩倩等.Mondini畸形婴幼儿人工耳蜗术后听觉能力长期随访研究[J].中国听力语言康复科学杂志,2024,22(05):460-464. DOI: 10.3969/j.issn.1672-4933.2024.05.003.
ZHANG Li-fang,MENG Chao,GUO Qian-qian,et al.Long-term Follow-up Study of Auditory Performance after Cochlear Implantation in Infants and Toddlers with Mondini Deformity[J].Chinese Scientific Journal of Hearing and Speech Rehabilitation,2024,22(05):460-464. DOI: 10.3969/j.issn.1672-4933.2024.05.003.
目的
2
探讨0~3岁Mondini畸形患儿人工耳蜗(CI)术后5年听觉能力发展规律。
方法
2
采用回顾性队列研究设计,共纳入235例36个月龄以内接受单侧CI手术患儿。根据影像学检查结果,分为Mondini组(47例)和内耳结构正常的对照组(188例)。由经过统一培训的专业人员使用听觉能力分级(CAP)量表评估受试者听觉能力。分别在CI术前及开机后1、2、3、6、9、12、18、24、30、36、42、48、54、60个月时进行评估。
结果
2
两组患儿CAP得分在CI术前及开机1个月时存在显著差异(
P
<
0.05),其余各随访时间点均无显著差异(
P
>
0.05)。在开机42、48、54、60个月时,两组患儿CAP得分均接近7分。Mondini组患儿CAP得分术前与开机后1、2、3、6、9、12、18、24、30、36、42、48、54、60个月均存在显著差异(
P
<
0.05);在开机1年内,开机1个月与3个月、2个月与3个月、3个月与9个月、6个月与9个月、9个月与18个月之间均存在显著差异(
P
<
0.05);而在开机1~3年,开12个月与24个月、18个月与24个月、24个月与36个月、30个月与42个月均存在显著差异(
P
<
0.05);在开机3年后各随访时间点间均不存在显著差异
(P
>
0.05)。
结论
2
CI可有效改善Mondini畸形患儿的听觉能力,患儿在CI术后3年内听觉能力有显著提高。此外,Mondini畸形患儿在CI术后听觉能力的提高与内耳结构正常的患儿表现相似。
Objective
2
To investigate the development of auditory performance in children with Mondini malformation aged 0-3 years within 5 years after cochlear implantation (CI).
Methods
2
A retrospective cohort study design was used in this study
and a total of 235 children who underwent unilateral CI surgery within 36 months of age were included. Based on the imaging findings
they were divided into Mondini group (47 cases) and control group with normal inner ear structure (188 cases). Auditory performance was assessed by the same group of uniformly standardized trained professionals using the Categories of auditory performance (CAP) scale. The assessment was performed before CI and at 1
2
3
6
9
12
18
24
30
36
42
48
54
and 60 months after switch-on
respectively.
Results
2
The CAP scores of the two groups were significantly different at pre-CI and at 1 month after switch on (
P
<
0.05)
and there were no significant differences at the rest of the follow-up time points (
P
>
0.05). At 42 months
48 months
54 months
and 60 months after start-up
the CAP scores of the children in both groups were close to 7. There was a significant difference between the preoperative CAP scores and the CAP scores at 1
2
3
6
9
12
18
24
30
36
42
48
54
and 60 months after start-up in the Mondini group (
P
<
0.05). Within 1 year of switch-on
significant differences were found between 1 month after switch-on and 3 months after switch-on
2 months after switch-on and 3 months after switch-on
3 months after switch-on and 9 months after switch-on
6 months after switch-on and 9 months after switch-on
and 9 months after switch-on and 18 months after switch-on (
P
<
0.05); whereas between 1 year and 3 years after switch-on
12 months after switch-on and 24 months after switch-on
18 months after switch-on and 24 months after switch-on
24 months after switch-on and 36 months after switch-on
30 months after switch-on and 42 months after switch-on were significantly different (
P
<
0.05); and there were no differences between the follow-up time points after 3 years of switch-on (
P
>
0.05).
Conclusion
2
Cochlear implantation is an effective way to improve auditory performance in children with Mondini malformation. Children with Mondini malformation aged 0-3 years can obtain a significant improvement in auditory performance within 3 years after CI and enter a plateau period after 3 years. The benefit of CI in children with Mondini malformation is comparable to that in children with normal inner ear structure.
Mondini畸形人工耳蜗植入听觉能力分级
Mondini deformityCochlear implantationCategories of auditory performance
Ozbal Batuk M, Sennaroglu L. Incomplete Partition Type II[M]. In: Sennaroglu L ed. Inner Ear Malformations: Classification, Evaluation and Treatment. Cham: Springer International Publishing, 2022.257-270.
Suri NM, Prasad AR, Sayani RK, et al. Cochlear implantation in children with Mondini dysplasia: our experience[J]. J Laryngol Otol, 2021,135(2):125-129.
Kumari A, Arumugam SV, Malik V, et al. Audiological and Surgical Outcomes of Pediatric Cochlear Implantation in Mondini's Dysplasia: Our Experience[J]. J Int Adv Otol, 2021,17(1):19-22.
Chen X, Yan F, Liu B, et al. The development of auditory skills in young children with Mondini dysplasia after cochlear implantation[J]. PLoS One, 2014,9(9):e108079.
Archbold S, Lutman ME, Marshall DH. Categories of Auditory Performance[J]. Ann Otol Rhinol Laryngol Suppl, 1995,166:312-314.
Chadha NK, James AL, Gordon KA, et al. Bilateral cochlear implantation in children with anomalous cochleovestibular anatomy[J]. Arch Otolaryngol Head Neck Surg, 2009,135(9):903-909.
Sennaroglu L. Cochlear implantation in inner ear malformations--a review article[J]. Cochlear Implants Int, 2010,11(1):4-41.
McClay JE, Tandy R, Grundfast K, et al. Major and minor temporal bone abnormalities in children with and without congenital sensorineural hearing loss[J]. Arch Otolaryngol Head Neck Surg, 2002,128(6):664-671.
Benchetrit L, Jabbour N, Appachi S, et al. Cochlear Implantation in Pediatric Patients With Enlarged Vestibular Aqueduct: A Systematic Review[J]. Laryngoscope, 2022,132(7):1459-1472.
Otte J, Schuknecht HF, Kerr AG. Ganglion cell populations in normal and pathological human cochleae. Implications for cochlear implantation. 1978[J]. Laryngoscope, 2015,125(5):1038.
Blamey P. Are spiral ganglion cell numbers important for speech perception with a cochlear implant?[J]. Am J Otol, 1997,18(6 Suppl):S11-S12.
Linthicum FJ, Fayad JN. Spiral ganglion cell loss is unrelated to segmental cochlear sensory system degeneration in humans[J]. Otol Neurotol, 2009,30(3):418-422.
Cheng YS, Svirsky MA. Meta-Analysis-Correlation between Spiral Ganglion Cell Counts and Speech Perception with a Cochlear Implant[J]. Audiol Res, 2021,11(2):220-226.
Sampaio AL, Cureoglu S, Schachern PA, et al. Massive endolymphatic sac and vestibular aqueduct in Mondini dysplasia[J]. Arch Otolaryngol Head Neck Surg, 2004,130(5):678-680.
Schmidt JM. Cochlear neuronal populations in developmental defects of the inner ear. Implications for cochlear implantation[J]. Acta Otolaryngol, 1985,99(1-2):14-20.
孟子珅, 徐丽. Mondini畸形聋病患者人工耳蜗植入疗效的Meta分析[J]. 临床耳鼻咽喉头颈外科杂志, 2020,34(4):314-319.
高芳芳, 王启荣, 于淑东, 等. 人工耳蜗植入术295例语言康复临床分析[J]. 山东大学耳鼻喉眼学报, 2018,32(02):62-65.
王斌, 曹克利, 魏朝刚, 等. EABR辅助31例Mondini畸形人工耳蜗植入及术后效果分析[J]. 中华耳科学杂志, 2017,15(1):35-42.
Qi S, Kong Y, Xu T, et al. Speech development in young children with Mondini dysplasia who had undergone cochlear implantation[J]. Int J Pediatr Otorhinolaryngol, 2019,116:118-124.
Kaya S, Hizli O, Kaya FK, et al. Peripheral vestibular pathology in Mondini dysplasia[J]. Laryngoscope, 2017,127(1):206-209.
Schuknecht HF. Mondini dysplasia; a clinical and pathological study[J]. Ann Otol Rhinol Laryngol Suppl, 1980,89(1 Pt 2):1-23.
Sennaroglu L. Histopathology of inner ear malformations: Do we have enough evidence to explain pathophysiology?[J]. Cochlear Implants Int, 2016,17(1):3-20.
王大华, 周慧芳, 张静. 中文版听觉行为分级对语前聋儿童人工耳蜗植入术后汉语听觉行为评估的研究[J]. 临床耳鼻咽喉头颈外科杂志, 2015,29(5):441-444.
Nikolopoulos TP, Archbold SM, Gregory S. Young deaf children with hearing aids or cochlear implants: early assessment package for monitoring progress[J]. Int J Pediatr Otorhinolaryngol, 2005,69(2):175-186.
Xu T, Zhong Y, Wang H, et al. A normative study of auditory perception in Mandarin-speaking children with categories of auditory Performance-II[J]. Int J Pediatr Otorhinolaryngol, 2021,145:110705.
0
浏览量
57
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构