浏览全部资源
扫码关注微信
1.首都医科大学附属北京同仁医院/耳鼻咽喉头颈科学教育部重点实验室(首都医科大学) 北京 100005
2.首都医科大学生物医学工程学院/临床生物力学应用基础研究北京市重点实验室 北京 100069
亓贝尔 硕士 副研究员;研究方向:听觉障碍的临床与应用研究
李海云,E-mail:haiyunli@ccmu.edu.cn
纸质出版日期:2024-05-15,
收稿日期:2023-12-19,
移动端阅览
亓贝尔,董瑞娟,李海云.麦克风阵列语音增强技术在人工耳蜗中的应用[J].中国听力语言康复科学杂志,2024,22(03):284-289.
QI Bei-er,DONG Rui-juan,LI Hai-yun.The Application of Microphone Array Speech Enhancement Technology in Cochlear Implants[J].Chinese Scientific Journal of Hearing and Speech Rehabilitation,2024,22(03):284-289.
亓贝尔,董瑞娟,李海云.麦克风阵列语音增强技术在人工耳蜗中的应用[J].中国听力语言康复科学杂志,2024,22(03):284-289. DOI: 10.3969/j.issn.1672-4933.2024.03.014.
QI Bei-er,DONG Rui-juan,LI Hai-yun.The Application of Microphone Array Speech Enhancement Technology in Cochlear Implants[J].Chinese Scientific Journal of Hearing and Speech Rehabilitation,2024,22(03):284-289. DOI: 10.3969/j.issn.1672-4933.2024.03.014.
噪声环境下的言语识别是人工耳蜗使用者面临的一个难题,目前已提出了多种技术方法用于改善这一问题。麦克风阵列语音增强技术是其中之一,旨在通过改进人工耳蜗前端信号采集系统性能,提高信噪比提升人工耳蜗使用者噪声下的言语识别能力,具有较好的临床应用价值。本文介绍了麦克风阵列与语言增强技术的基本原理、临床应用效果、存在的问题和未来展望,以期为深入探索技术创新对改善人工耳蜗使用者噪声下言语可懂度提供参考。
Cochlear implant users face challenges in speech recognition in noisy environments. Various technologies and methods have been proposed to address this issue. One such solution is the use of microphone array speech enhancement technology
which aims to amplify the sound from the front and suppress noise from the sides and rear
thereby improving the signal-to-noise ratio. This paper introduces the fundamental principles of microphone arrays and speech enhancement technology
evaluates their effectiveness in clinical applications
and discusses current issues and future developments.The goal is to serve as a reference for exploring technological innovations aimed at improving speech intelligibility for cochlear implant users in noisy environments.
麦克风阵列语音增强波束形成人工耳蜗
Microphone arrayVoice enhancementBeamformingCochlear implant
World Report on Hearing (who. int) [EB/OL]https://www.who.int/publications/i/item/9789240020481. 2021-03-03https://www.who.int/publications/i/item/9789240020481.2021-03-03.
亓贝尔,李晓芳,董瑞娟,等.语后聋人工耳蜗植入者的心理健康状况分析[J].听力学及言语疾病杂志,2012,20(1):40-43.
Wimmer W, Kompis M, Stieger C, et al. Directional Microphone Contralateral Routing of Signals in Cochlear Implant Users: A Within-Subjects Comparison[J]. Ear and hearing, 2017, 38(3):368-373.
Zohourian M, Enzner G, Martin R. Binaural speaker localization integrated into an adaptive beamformer for hearing Aids[J].IEEE ACM Transactions on Audio Speech and Language Processing, 2018, 26(3): 515-528.
Aghsoleimani M, Jalilvand H, Mahdavi ME, et al. The Acceptable Noise Level Benefit From Directionality for Listeners With Severe Hearing Loss[J]. Clinical and experimental otorhinolaryngology, 2018,11(3):166-173.
曾子临.方向性麦克风技术在助听器中的应用[J].中国听力语言康复科学杂志, 2006, 4(4): 50-53.
王冬霞,赵光,郑家超.麦克风阵列拓扑结构对语音增强系统性能影响的理论分析[J].辽宁工业大学学报(自然科学版),2010,30(01):1-4.
于春和,马跃.基于麦克风阵列的语音增强算法研究[J].电脑与信息技术, 2021, 29(03):39-42.
Flanagan JL,Johnston JD,Zahn R,et al. Computer-steered microphone arrays for sound transduction in large rooms[J]. Journal of the American Academy of Audiology, 1985, 78(5):1508-1518.
Frost OL. An algorithm for linearly constrained adaptive array processing[J]. Proceedings of the IEEE, 1972, 60(8): 926-935.
Griffiths L, Jim C. An alternative approach to linearly constrained adaptive beamforming[J]. IEEE Transactions on Antennas and Propagation, 1982, 30(1): 27-34.
Zelinski R. A microphone array with adaptive post-filtering for noise reduction in reverberant rooms[C]. IEEE International Conference on Acoustics, Speech and signal Processing, NewYork, USA. 1988.2578-2581.
MvCowan AI, Bourlard H. Microphone array post-filter based on noise field coherence[J].IEEE Transactions on Speech and Audio Processing, 2003, 11(6):709-716.
Gannot S,Cohen I.Speech enhancement based on the general transfer function GSC and postfiltering[J]. IEEE Transactions on Speech and Audio Processing, 2004, 12(6):561-571.
陈又圣,陈艳.电子耳蜗前端双麦克风语音增强及波束形成算法研究[J].生物医学工程学杂志, 2019,36(3):468-477.
Gong Q, Chen Y. Parameter selection methods of delay and beamforming for cochlear implant speech enhancement[J]. Acoustical Physics, 2011, 57(4): 542-550.
Li XX, Wang DW, Ma XY, et al. Robust adaptive beamforming using iterative variable loaded sample matrix inverse[J]. Electronic Letters, 2018, 54(9): 546-548.
Honeder C,Liepins R, Arnoldner C, et al. Fixed and adaptive beamforming improves speech perception in noise in cochlear implant recipients equipped with the MED-EL SONNET audio processor[J]. PLoS One, 2018,13(1):e0190718.
Büchner A,Schwebs M, Lenarz T. Speech understanding and listening effort in cochlear implant users - microphone beamformers lead to significant improvements in noisy environments[J]. Cochlear Implants International, 2020,21(1):1-8.
Hagen R, Radeloff A, Stark T, et al. Microphone directionality and wind noise reduction enhance speech perception in users of the MED-EL SONNET audio processor[J]. Cochlear Implants International, 2020,21(1):53-65.
Mosnier I, Mathias N, Flament J,et al. Benefit of the UltraZoom beamforming technology in noise in cochlear implant users[J]. European Archives of Otorhinolaryngology, 2017,274(9):3335-3342.
Ernst A, Anton K, Brendel M, et al. Benefit of directional microphones for unilateral, bilateral and bimodal cochlear implant users[J]. Cochlear Implants International, 2019,20(3):147-157.
Dwyer RT, Roberts J, Gifford RH. Effect of Microphone Configuration and Sound Source Location on Speech Recognition for Adult Cochlear Implant Users with Current-Generation Sound Processors[J]. Journal of the American Academy of Audiology, 2020,31(8):578-589.
Van de Heyning P, Távora-Vieira D, Mertens G, et al Towards a Unified Testing Framework for Single-Sided Deafness Studies: A Consensus Paper[J]. Audiology and Neuro-otology, 2016,21(6):391-398.
Kurz A, Zanzinger M, Hagen R, et al. The impact of cochlear implant microphone settings on the binaural hearing of experienced cochlear implant users with single-sided deafness[J]. European Archives of Otorhinolaryngology, 2021,278(6):2067-2077.
Chung K. Perceived sound quality of different signal processing algorithms by cochlear implant listeners in real-world acoustic environments[J].Journal of communication disorders, 2020,83:105973.
Potts LG, Jang S, Hillis CL. Evaluation of Automatic Directional Processing with Cochlear Implant Recipients[J]. Journal of the American Academy of Audiology, 2021,32(8):478-486.
Goehring T, Bolner F, Monaghan JJ, et al. Speech enhancement based on neural networks improves speech intelligibility in noise for cochlear implant users[J]. Hearing Research, 2017,344:183-194.
Wang D, Hansen JHL. Speech enhancement for cochlear implant recipients[J]. Journal of the American Academy of Audiology, 2018,143(4):2244.
亓贝尔,董瑞娟,刘瀚迪,等.方向性麦克风对语后聋人工耳蜗使用者言语识别能力的影响[J].听力学及言语疾病杂志, 2023,31(06):495-499.
0
浏览量
307
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构