浏览全部资源
扫码关注微信
1.解放军总医院耳鼻咽喉头颈外科医学部 北京 100853
2.解放军总医院京中医疗区旃坛寺门诊部 北京 100034
丁志伟 博士 主治医师;研究方向:耳鸣发病机制及脑功能成像研究
申卫东,E-mail:wdshen@hotmail.com
韩东一,E-mail:hdy301@263.net
纸质出版日期:2023-03-15,
收稿日期:2022-07-15,
移动端阅览
丁志伟,张驰,王方园等.功能性近红外成像技术在听力学领域中的应用[J].中国听力语言康复科学杂志,2023,21(02):166-169.
DING Zhi-wei,ZHANG Chi,WANG Fang-yuan,et al.Functional Near-Infrared Spectroscopy and Its Clinical Application in the Field of Audiology[J].Chinese Scientific Journal of Hearing and Speech Rehabilitation,2023,21(02):166-169.
丁志伟,张驰,王方园等.功能性近红外成像技术在听力学领域中的应用[J].中国听力语言康复科学杂志,2023,21(02):166-169. DOI: 10.3969/j.issn.1672-4933.2023.02.013.
DING Zhi-wei,ZHANG Chi,WANG Fang-yuan,et al.Functional Near-Infrared Spectroscopy and Its Clinical Application in the Field of Audiology[J].Chinese Scientific Journal of Hearing and Speech Rehabilitation,2023,21(02):166-169. DOI: 10.3969/j.issn.1672-4933.2023.02.013.
功能性近红外成像技术(functional near-Infrared spectroscopy,fNIRS)是一种可靠的无创神经功能成像技术。因对环境要求低,被试限制小,对运动不敏感性、便携性、无声,以及对人体无损害等特点使其在临床应用和研究领域具有明显优势。近年来,fNIRS应用迅速增加,特别是神经科学领域。本文从fNIRS机制、设备分类、数据分析及优劣势方面对功能性近红外成像技术进行简介,重点讨论其在听力学领域中的应用。
Functional near-infrared spectroscopy (fNIRS) is a well-established non-invasive imaging modality in the functional neuroimaging research. Several features of fNIRS
including low requirement on environments
subjects-friendliness
motion robustness
portability
noiseless
and non-invasiveness make it an advantageous tool in both clinical application and scientific research.It has been utilized increasingly
especially in the field of neuroscience. The review aims to introduces the mechanism of fNIRS
classification of equipment
data analysis
its advantages and limitations in detecting brain activity
and emphatically disscuses the current application in the field of audiology.
功能性近红外成像技术人工耳蜗植入耳鸣
Functional near-infrared spectroscopyCochlear implantTinnitus
Ferrari M,Quaresima V.A brief review on the history of human functional near-infrared spectroscopy(fNIRS) development and fields of application[J]. Neuroimage,2012,63(2):921-935.
Nguyen HD, Yoo SH, Bhutta MR, et al. Adaptive filtering of physiological noises in fNIRS data[J]. Biomed Eng Online,2018,17(1):180-181.
Tak S,Ye JC. Statistical analysis of fNIRS data: acomprehensive review[J]. Neuroimage,2014,85(Pt1):72-91.
Emberson LL, Zinszer BD, Raizada RDS,et al. Decoding the infant mind: multivariate pattern analysis(MVPA) using fNIRS[J]. PLoS One,2017, 12(4): e172500.
Lee DS,Lee JS,Oh SH, et al.Cross-modal plasticity and cochlear implants[J]. Nature 2001,409(6817):149-150.
Sandmann P, Dillier N,Eichele T, et al.Visual activation of auditory cortex reflects maladaptive plasticity in cochlear implant users[J]. Brain,2012,135 (Pt 2):555-568.
Lyness CR, Woll B, Campbell R,et al.How does visual language affect crossmodal plasticity and cochlear implant success? [J]. Neurosci Biobehav Rev,2013,37(10Pt2):2621-2630.
Anderson CA, Lazard DS, Hartley DE.Plasticity in bilateral superior temporal cortex: Effects of deafness and cochlear implantation on auditory and visual speech processing[J]. Hear Res,2017,343(6):138-149.
Anderson CA, Wiggins IM, Kitterick PT, et al. Adaptive benefit of cross-modal plasticity following cochlear implantationin deaf adults[J]. Proc Natl Acad Sci USA, 2017,114(38):10256-10261.
Schecklmann M, Giani A, Tupak S, et al. Functional near-infrared spectroscopy to probe state-and trait-like conditions in chronic tinnitus: a proof-of-principle study[J]. Neural Plast,2014,2014(12):894203.
Issa M, Bisconti S, Kovelman I,et al. Human auditory and adjacent nonauditory cerebral cortices are hypermetabolic in tinnitus asmeasured by functional near-infrared spectroscopy (fNIRS)[J]. Neural Plast,2016,2016(8):7453149.
Noreña AJ, Eggermont JJ. Changes in spontaneous neural activity immediately after an acoustic trauma: implications for neural correlates of tinnitus[J]. Hear Res, 2003,183(1-2):137-153.
Vanneste S, Ridder DD. The auditory and non-auditory brain areas involved in tinnitus. An emergent property of multiple parallel overlapping subnetworks[J]. Front Syst Neurosci,2012,6(14):31-34.
Vanneste S, Heyning PVD, Ridder DD. Contralateral parahippocampal gamma-band activity determines noise-like tinnitus laterality: A region of interest analysis[J]. Neuroscience,2011,199(4):481-490.
San Juan J, Hu XS, Issa M, et al. Tinnitus alters resting state functional connectivity (RSFC) in human auditory and non-auditory brain regions as measured by functional near-infrared spectroscopy (fNIRS)[J]. PLoS One, 2017,12(6): e0179150.
San Juan J,Zhai T, Ash-Rafzadeha A,et al.Tinnitus and auditory cortex: using adapted functional near-infrared spectroscopy to measure resting-state functional connectivity[J]. Neuroreport,2021,32(1):66-75.
Zhai T, Ash-Rafzadeh A, Hu XS,et al. Tinnitus and auditory cortex; Using adapted functional near-infrared-spectroscopy to expand brain imaging in humans[J]. Laryngoscope Investig Otolaryngol. 2020,6(1):137-144.
Scarapicchia V,Brown C,Mayo C,et al. Functional Magnetic Resonance Imaging and Functional Near-Infrared Spectroscopy: Insights from Combined Recording Studies[J]. Front Hum Neurosci, 2017,11(10):419-422.
Sato H,Yahata N,Funane T, et al.A NIRS-fMRI investigation of prefrontal cortex activity during a working memory task[J]. Neuroimage,2013,83(12):158-173.
Noah JA,Ono Y,Nomoto Y,et al. fMRI Validation of fNIRS Measurements During a Naturalistic Task[J]. J Vis Exp,2015,32(100):e52116.
0
浏览量
20
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构